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LETTER TO THE EDITOR

Large-scale probability density function for scalar field
advected by high Reynolds number turbulent flow
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Department of Mathematical Physics, Ural State University, Jekaterinburg, 620083, Russia
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Abstract. A closed equation for the one-point probability density function (PDF) for a scalar
field advected by the three-dimensional random velocity field with arbitrary many spatial/
temporal scales and infrared divergence in the limit of high Reynolds number has been
derived, using the functional derivative technique and renormalization theory, together with
the assumption that the turbulent velocity is a homogeneous, isotropic, Gaussian random field.

It has been shown that when the spectral parameters of a random velocity field slightly
deviate from their Kolmogorov–Obukhov values, the equation for the PDF in the long-time,
large-distance limit can be derived exactly and well described by a conventional diffusion
theory, while the Lagrangian scaling function describing the large-scale particle displacements in
turbulent flow is essentially superdiffusive. The scaling procedure in the limit of high Reynolds
number allows us to completely overcome the well known closure problem associated with
diffusion term.

The random advection of a scalar field by turbulent flow has attracted enormous attention in
past years because of its importance, both for the practical applications involving a monitor
of pollutants in the atmosphere and also for our understanding the nature of turbulence
itself. The fundamental difficulty in this problem is that the velocity of fully developed
turbulence involves random fluctuations over a vast range of spatial and temporal scales.
Therefore any theory that intends to describe the turbulent transport phenomena must take
into account the entire spectrum of scales of length. A thorough discussion of this problem,
its theoretical and experimental aspects, can be found in [1], and references therein.

In recent years there has been renewed interest in the advection-diffusion problem
generated by the successful applications of renormalization group methods [2–5] and
interesting asymptotic behaviour of the probability density function of advected scalar
fields [6–8] (see also [9–13]). Recently, Avellaneda and Majda have developed anexact
renormalization technique for the solution of eddy diffusivity problem related to the
advection by a random velocity field with long-range correlations and infrared divergence
[14–17]. Although a great deal of progress has been made in this theory, here the results are
restricted to a problem of the derivation of eddy diffusivity equations for the transport of a
passive scalar. In view of the success of the exact renormalization procedure, it would seem
natural to try to extend these results and derive an effective equation for the probability
density function (PDF) for a scalar field.

It is well known that the main difficulty with the PDF approach arises because of the
closure problem associated with the diffusion term [13]. It is our purpose to overcome
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this problem by an exact renormalization theory considering athree-dimensionalrandom
velocity field with arbitrary many spatial and temporal scales. Our intention is to derive
a closed equation for the one-point PDF for a scalar field in the long-time, large-distance
limit.

We assume that the turbulence is steady, homogeneous, and isotropic with the energy
spectrum [1]

E(k) = cl5/30 ε̄2/3 (l0k)
2

[1+ (l0k)2]11/6
exp(−η2k2) 0< k <∞ (1)

whereη = (ν3/ε̄)1/4 is the dissipation length scale,l0 is the characteristic length for the
energy containing eddies,ε̄ is the average dissipation rate,ν is the kinematic viscosity,k
is the wavenumber, andc is a dimensionless constant.

In what follows we shall measure time and space in terms of the dissipation time scale
td = (ν/ε̄)1/2 and length scaleη considering all other quantities as dimensionless. Since we
are interested here with the limit of high Reynolds number, the ratio of the Kolmogorov
length scaleη to the integral length scalel0 is a small parameter, i.e.

ε = η

l0
� 1 ε = R e−3/4. (2)

Consider a non-dimensional scalar fieldϕ(t,x) whose dynamical evolution is specified
by the advection equation

∂ϕ

∂t
+ v(t,x) · ∇ϕ = D∇2ϕ + α(ε)f (ϕ) ϕ(0,x) = ϕ0(εx) (3)

whereD is the inverse Prandtl number andv(t,x) is the incompressible random velocity
field, i.e.∇ · v = 0. It is assumed here that the initial distribution ofϕ(t,x) varies only
on the integral length scale. The last term in (2) represents the chemical reaction with the
growth rateα(ε) depending on the small parameterε.

In this paper we will be concerned with the behaviour of the one-point PDF in the
long-time, large-distance limit. Let us define the PDF as follows,

pε(t,x, ϕ) = 〈δ(ϕ − ϕε(t,x))〉 (4)

where

ϕε(t,x) = ϕ
(

t

λ (ε)
,
x

ε

)
andϕ(t,x) is a solution of (3) corresponding to a particular realization of the random field
v(t,x). The angular brackets denote an average over an ensemble of realizations ofv(t,x).

Our purpose is to find such a scaling functionλ(ε) so that

p0(t,x, ϕ) = lim
ε→0

pε(t,x, ϕ) = lim
ε→0

〈
δ

(
ϕ − ϕ

(
t

λ(ε)
,
x

ε

))〉
(5)

obeys an effective renormalized equation.
A suitable choice of scaling functionλ(ε) under the renormalization procedure (the limit

(5) should be non-trivial) gives us the Lagrangian scaling law for the large-scale particle
displacementx(t) in turbulent flowλ(x−1(t)) ∼ t .

Applying the scaling transformation

x→ x

ε
t → t

λ(ε)
(6)
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to (3) we obtain a Cauchy problem forϕε(t,x)

∂ϕε

∂t
+ ε
λ
v

(
t

λ
,
x

ε

)
∇ϕε = ε2D

λ
∇2ϕε + α

λ
f (ϕε) ϕε(0,x) = ϕ0(x). (7)

To find an equation forpε(t,x, ϕ) we use the functional derivative technique from
[18, 19]. By differentiating (4) with respect tot and using (7) one can get

∂pε

∂t
= − ∂

∂ϕ

(
α

λ
f (ϕ)pε

)
− ε

2D

λ

∂

∂ϕ
〈∇2ϕεδ(ϕ − ϕε)〉 +Qε (8)

whereQε is

Qε = − ε
λ

〈
v

(
t

λ
,
x

ε

)
· ∇δ(ϕ − ϕε)

〉
.

By assuming Gaussian statistics for the velocity fieldv(t,x) and using the Furutsu–Novikov
formula [18, 19] we find that the correlation termQε can be written as

Qε = ε

λ

∫ ∫ 〈
vi

(
t

λ
,
x

ε

)
vj

(
τ

λ
,
y

ε

)〉
∂2

∂xi∂ϕ

〈
δϕ(t/λ,x/ε)

δvj (τ/λ,y/ε)
δ(ϕ − ϕε)

〉
dτ dy

ελ
(9)

whereδ/δvi denotes functional derivatives and summation over repeated indices is implied.
The evolution equation (8) with (9) is exact but still in an unclosed form. To proceed

further we need the explicit expressions for the velocity correlation tensor and the two-
time, two-point functional derivative appearing in (9). It should be noted that the response
function δϕ(t/λ,x/ε)/δvj (τ/λ,y/ε) involves the stochastic fieldϕε(t,x) itself; hence it
is impossible in general to obtain a closed equation forpε [18, 19].

Since v(t,x) is assumed to be a Gaussian field with zero mean, its statistical
characteristics are completely determined by the correlation tensor [14–17, 20, 21]

〈vi(t,x)vj (τ,y)〉 = 1

π2

∫ ∫
eik·(x−y)−iω(t−τ)E(k)

τ (k)

1+ (τ (k)ω)2k
−2

(
δij − kikj

k2

)
dk dω

(10)

where

E(k) = ck2 e−k
2

(ε2+ k2)(11/6)−(σ/2) τ (k) =
{
(ε2+ k2)−(1/3)+(z/2) k < 1

k−2 k > 1.
(11)

This spectral representation with two exponentsσ and z may be considered as a
generalization of (1). The analogous parametrized family of incompressible velocity fields
was first introduced in [14]. It follows from (10), (11) that the Kolmogorov–Obukhov
turbulence corresponds to the case in whichσ = 0 andz = 0. Therefore, the model (10)
and (11) with the variable parametersσ andz corresponds to the intermittency corrections
to the Kolmogorov–Obukhovk−5/3 law [1]. The spectral parameterσ appearing here may
be thought of as representing a deviation of the energy spectrum from the classical one in
the inertial range, where, as follows from (11),E(k) = ck−(5/3)+σ asε � k � 1.

The parameterσ may be considered as a natural measure of spatial correlations of the
random velocity field. It follows from (10) that the structural function forv is

〈(v(x+ y,t)− v(x,t))2〉 = 4
∫ ∞

0
E(k)

(
1− sinky

ky

)
dk ∼ y(2/3)+σ . (12)

Since

1

2
〈v2〉 =

∫ ∞
0
E(k) dk = cε−(2/3)+σ

∫ ∞
0

z2

(1+ z2)(11/6)−(σ/2) exp(−ε2z2) dz (13)
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the exponentσ may also be interpreted as a measure of the infrared divergence of kinetic
energy in the limitε → 0 (σ < 2/3) [14–17, 20, 21].

The dynamic exponentz describes the dependence of the correlation timeτ(k) uponk.
For z = 2

3, all ‘eddies’ have identical turnover time.
Now we are in a position to consider the limitε → 0 in (9) and thereby to find the

scaling lawλ (ε) and an effective equation describing the long-time, large-distance behaviour
of the one-point PDF of scalar field. However, before proceeding further we would like
to make some comments concerning the asymptotic behaviour of (9) asε → 0. One can
expect that for a wide range of values ofσ and z the diffusive scalingλ (ε) = ε2 leads
to the infrared divergence of (9) in the limitε → 0. Hence one needs the renormalization
procedure that makes the correlation term (9) finite. In what follows we consider only
the cases in which the effect of infrared divergence plays a key role (σ < 2/3). One
can anticipate that there are at least two very different asymptotic regimes when such a
behaviour occurs giving the anomalous scaling laws [17]. One is obtained if we take the
limit λ/ε(2/3)−z → 0 when the effective correlation timeλ/ε(2/3)−z(1+ k2)−(1/3)+(z/2) tends
to zero. We refer to this regime as the ‘fast turbulence limit’ [17] and show below that
the effective equation forp0(t,x, ϕ) = limε→0p

ε(t,x, ϕ) is a conventional diffusion-like
equation while the scaling law is superdiffusive. The other regime can be obtained when
λ/ε(2/3)−z →∞ and, therefore, the effective correlation time tends to infinity. We refer to
this regime as the ‘frozen turbulence limit’ [17]. Unlike the first case no simple effective
equation can be derived.

‘Fast turbulence limit’. Consider the case in which

λ

ε(2/3)−z
→ 0 asε → 0. (14)

The renormalization procedure must consist of determining such a scaling functionλ(ε)

so that the correlation term

Qε = 1

λ2π2

∫ ∫ ∫ ∫
exp

[
i
k · (x− y)

ε
− i
ω(t − τ)

λ

]
E(k)

τ(k)

1+ (τ (k)ω)2

×k−2

(
δij − kikj

k2

)
∂2

∂xi∂ϕ

〈
δϕ(t/λ,x/ε)

δvj (τ/λ,y/ε)
δ(ϕ − ϕε)

〉
dk dω dτ dy (15)

has a non-trivial limit asε → 0. The appropriate choice ofλ(ε) is

λ(ε) = ε(2/3)+σ+z.
It follows from (11), (14) and (15) that asε tends to zero, the spectral density in the

correlation termQε loses its dependence onω (after the frequency rescaling) and this implies
that a scaling procedure generates a white-noise in time. This fact allows us to derive an
equation forp0(t,x, ϕ) in a closed form. It is important to note that sinceε2/λ → 0
the molecular diffusion is irrelevant. Therefore, the closure problem associated with the
diffusion term is completely overcome in this limit. Because of the white-noise limit it is
sufficient to calculate the one-time functional derivative

δϕ(t/λ,x/ε)

δvj (t/λ,y/ε)
= −ε ∂ϕ

∂xi
δ
(x
ε
− y
ε

)
and hence

lim
ε→0

Qε = DT

(
∂2p0

∂x2
1

+ ∂
2p0

∂x2
2

+ ∂
2p0

∂x2
3

)
(16)
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provided that the integral

DT = 4c

3

∫ ∞
0

k2

(1+ k2)(13/6)−(σ/2)−(z/2) dk

determining the turbulent diffusion coefficientDT converges, i.e.σ + z < 4/3. The
requirement in (14) leads to the restrictionσ + 2z > 0.

It follows from (8) and (16) that the effective equation describing the long-time, large-
distance behaviour of the one-point PDF is given by

∂p0

∂t
= − ∂

∂ϕ
(α0 f (ϕ)p

0)+DT

(
∂2p0

∂x2
1

+ ∂
2p0

∂x2
2

+ ∂
2p0

∂x2
3

)
(17)

provided

σ + 2z > 0 σ + z < 4/3 σ < 2/3

andα(ε) = α0λ(ε).
The initial condition isp0(0,x, ϕ) = δ (ϕ − ϕ0 (x)).
The large-scale, long-time Lagrangian scaling for the particle displacement is

superdiffusive, i.e.

x2(t) ∼ t6/(2+3σ+3z).

For the Kolmogorov–Obukhov turbulenceσ = 0, z = 0, we recover the well known scaling
x2(t) ∼ t3 corresponding to the Richardson law [1, 17].

In summary, by using an exact renormalization theory and functional derivative
technique, we are able without anyad-hocappoximation to derive the effective equation
for the long-time, large-distance form for the one-point probability density function of the
scalar field advected by a three-dimensional random velocity field with arbitrary many
spatial-temporal scales and infrared divergence in the limit of large Reynolds number. We
show that when the spectral parameters of a random velocity field slightly deviate from
their Kolmogorov–Obukhov values, the PDF equation for a scalar field can be determined
exactly and, what is more, it is well described by a conventional diffusion theory, while the
Lagrangian scaling function is found to be essentially superdiffusive.

Note that there are several possible directions to explore by the method developed here.
First, one may study the higher-order statistics of a passive scalar including anomalous
turbulent decay and large-scale intermittency [9, 10]. Also, one can extend the analysis to
the turbulent Kolmogorov–Petrovskii–Piskunov dynamics of the reaction fronts in three-
dimensional space [20–24].

The research was supported by EC project INTAS-94-2580.
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